gunes enerjisiuzerin..


Haber bülteni üyeliği



Ziyaret Bilgileri

[ Per, 19 Eki 2017 ]
Toplam 7 ziyaret
3 benzersiz ziyaretçi

Güneş enerjisi uygulamalarında  düzlemsel güneş kollektör sistemlerinin yanı sıra daha yüksek sıcaklıklara ulaşmak için yoğunlaştırıcı kollektör sistemleri kullanılmaktadır. Düzlemsel güneş kollektörleri için kullanılan kavram ve tarifler, yoğunlaştırıcı kollektörler için de geçerlidir. Bununla birlikte yoğunlaştıcı kollektör teknolojisinin daha karmaşık olması nedeniyle, yeni tariflerin yapılması gereklidir.

Kollektörlerde güneş enerjisinin düştüğü net alana "açıklık alanı" ve güneş enerjisinin yutularak ısı enerjisine dönüştürüldüğü yüzeye "alıcı yüzey" denir. Düzlemsel güneş kollektörlerinde açıklık alanı ile alıcı yüzey alanı birbirine eşittir. Yoğunlaştırıcı kollektörlerde ise güneş enerjisi, alıcı yüzeye gelmeden önce optik olarak yoğunlaştırıldığı için alıcı yüzey, açıklık alanından daha küçük olmaktadır.

Güneş enerjisini yoğunlaştıran kollektörlerde en önemli kavramlardan biri  "yoğunlaştırma oranı" dır. Yoğunlaştırma oranı; açıklık alanının alıcı yüzey alanına oranı şeklinde tarif edilir. Yoğunlaştırma oranı, iki boyutlu yoğunlaştırıcılarda (parabolik oluk) 300, üç boyutlu yoğunlaştırıcılarda (parabolik çanak) 40000 mertebesindedir.

Bu tür kollektörlerde güneş enerjisi, yansıtıcı veya ışın kırıcı yüzeyler yardımı ile doğrusal ya da noktasal olarak yoğunlaştırılabilir.

Doğrusal Yoğunlaştırıcılar

Parabolik oluk kollektörler, doğrusal yoğunlaştırma yapan ve kesiti parabolik olan dizilerden oluşur. Oluğun iç kısmındaki yansıtıcı yüzeyler, güneş enerjisini paraboliğin odağında yer alan ve boydan boya uzanan siyah bir absorban boruya yansıtır.

Orta derecede sıcaklık isteyen uygulamalarda kullanılan bu sistemlerde, güneş enerjisi bir doğru üzerinde yoğunlaştırılacağından tek boyutlu hareket ile güneşi izlemek yeterlidir.

                     

Noktasal Yoğunlaştırıcılar

İki boyutta güneşi izleyip noktasal yoğunlaştırma yapan ve daha yüksek sıcaklıklara ulaşan bu tür sistemler, parabolik çanak ve merkezi alıcı olmak üzere iki gruba ayrılır.

Parabolik çanak kollektörler iki eksende güneşi takip ederek sürekli olarak güneşi odak noktasına yoğunlaştırırlar.

                           

Merkezi alıcı sistemde, tek tek odaklama yapan ve heliostat adı verilen düzlemsel aynalardan oluşan bir alan, güneş enerjisini, bir kule üzerine monte edilmiş ve alıcı denilen ısı eşanjörüne yansıtır. Heliostatlar bilgisayar tarafından kontrol edilerek, alıcının devamlı güneş alması sağlanır.

                           

Yogunlaştırıcı Sistemler ile Elektirik Üretimi

Bugüne kadar güneş enerjisi ile elektrik üretiminde başlıca iki sistem kullanılmıştır. Birincisi, güneş enerjisini direkt olarak elektrik enerjisine dönüştüren fotovoltaik sistemlerdir. Fakat geçen 20 yıl içerisinde fotovoltaik sistem uygulamalarının artışına rağmen, teknolojisinin karmaşıklığı ve maliyetinin yüksek oluşu, geniş çapta elektrik üretimi için yetersiz olduğunu ortaya çıkarmıştır. İkinci seçenek ise, güneş enerjisinin yoğunlaştırıcı sistemler kullanılarak odaklanması sonucunda elde edilen kızgın buhardan, konvansiyonel yöntemlerle elektrik üretimidir.

Güneş termal güç santralleri, birincil enerji kaynağı olarak güneş enerjisini kullanan elektrik üretim sistemleridir. Bu sistemler temelde aynı yöntemle çalışmakla birlikte, güneş enerjisini toplama yöntemleri, yani kullanılan kollektörler bakımından farklılık gösterirler.  Toplama elemanı olarak parabolik oluk kollektörlerin kullanıldığı güç santrallerinde, çalışma sıvısı kollektörlerin odaklarına yerleştirilmiş olan absorban boru içerisinde dolaştırılır. Daha sonra, ısınan bu sıvıdan eşanjörler yardımı ile kızgın buhar elde edilir. Parabolik çanak kollektörler kullanılan sistemlerde de ya aynı yöntem kullanılır ya da merkeze yerleştirilen bir motor (Stirling) yardımı ile direkt olarak elektrik üretilir. Merkezi alıcılı sistemlerde ise, güneş ışınları düzlemsel aynalar (heliostat) yardımı ile alıcı denilen ısı eşanjörüne yansıtılır. Alıcıda ısıtılan çalışma sıvısından konvansiyonel yollarla elektrik elde edilir.

Güneş Termal Güç Santrallerinin Tasarım İlkeleri

Güneş termal güç santrallerinin tasarımında dikkate alınması gereken en önemli parametreler şunlardır;

- Bölge seçimi

- Güneş enerjisi ve iklim değerlendirmesi

- Parametrelerin optimizasyonu

- Bölge Seçimi

- Santralın tesis edileceği ideal bölge seçilirken aşağıdaki kriterler göz önünde bulundurulmalıdır.

-Yıllık yağış miktarının düşük olması,

-Bulutsuz ve sissiz bir atmosfere sahip olması,

-Hava kirliliğin olmaması,

-Ormanlık ve ağaçlık bölgelerden uzak olması,

-Rüzgar hızının düşük olması.

-Güneş Enerjisi ve iklim Değerlendirmesi

-Santralın tesis edileceği bölgenin, yılda en az 2000 saat güneşlenme süresine ve metrekare başına yıllık l500 kWh'lık bir güneş enerjisi değerine sahip olması gereklidir.  Ayrıca, 4 saatlik güneşlenme süresine sahip gün sayısının 150 den az olmaması gereklidir. Yukarıdaki şartları sağlayan bir bölgede santral tasarımı için aşağıdaki çalışmaların yapılması gerekir.

Uzun Dönem Performans Değerlendirmesi

Yoğunlaştırıcı kollektörlerin uzun dönem performans değerlendirmesi için saatlik direkt güneş enerjisi değerleri kullanılır. Bu değerler ölçümlerden elde edilemediği zaman, bir model yardımı ile günlük toplam güneş enerjisi değerlerinden elde edilmelidir. Coğrafi bölge ve kollektör seçiminin yapılmasında uzun dönem yıllık güneş enerjisi değerlerinden faydalanılır. Bu değerler aynı zamanda ekonomik analiz için de gereklidir.

İzleme Modülünün Seçimi

Doğrusal yoğunlaştırıcı kollektörler, Kuzey-Güney veya Doğu-Batı doğrultusunda yerleştirilebilir. Yön seçilirken, maksimum güneş enerjisinin hangi doğrultuda alındığı göz önünde bulundurularak yerleştirme yapılır. Genelde Kuzey-Güney doğrultusunda yerleştirmekle en iyi sonuç elde edilir.

Parametrelerinin Optimizasyonu

Doğrusal yoğunlaştırma yapan ve ısı transfer akışkanı olarak termal yağ kullanılan sistemlerde çalışma parametrelerinin optimizasyonu için aşağıdaki kriterler dikkate alınmalıdır.

Isı Transfer Yağının Seçimi : Güneş termal güç santralinin verimli çalışması büyük ölçüde, uygun ısı transfer akışkanının seçimine bağlıdır. Bu akışkanın dolaştığı sistem parçaları, 0 øC ile 300 øC arasında değişen sıcaklık dalgalanmalarına maruz kalırlar. Bu nedenle güç santrallerinde kullanılan ısı transfer akışkanında aşağıdaki özellikler aranır.

-Yüksek yanma noktası (500 °C'ın üstünde)

-Düşük buharlaşma basıncı

-Düşük sıcaklıklarda yüksek akışkanlık

-Yüksek yoğunluk

-Yüksek sıcaklıklarda ( 300 °C) sürekli çalışabilme

-Bu kriterlerin hepsini sağlayan bir yağda ayrıca 0 oC ve 300 oC arasında basınç düşmesinin minimum olması gerekir.

Basınç Düşmesi

İşletme basıncı; santralın önemli çalışma parametrelerinden biridir. İşletme basıncının maksimum ve minimum değerleri, işletme sıcaklığının maksimum ve minimum değerleri ile sınırlanır. Bu basıncın alt limiti ısı transfer akışkanının buharlaşmasını engelleyecek bir değerde olmalıdır.

Boru Boyutlandırması

Sistemdeki sıvının sirkülasyonu için kullanılan boru şebekesi, absorban borulardan ve esnek hortumlardan oluşur.  Kollektörlerdeki absorban borular sabittir. Fakat kollektörler arasındaki bağlantıyı sağlayan esnek hortumlar hareketli olduğu için uygun olarak boyutlandırılması önem taşır. Boruların çapının arttırılması, akışkan hızını ve basıncını düşürür. Hızın düşmesi ile artan ısı kayıpları maliyeti olumsuz yönde etkiler. Bunun için boru çapı belirlenirken, sistem basınç düşüşünün minimum olmasına ve çalışma basıncının işletme maliyetini minimum seviyeye getirmesine dikkat edilmelidir.

Kapasite Seçimi

Kollektör giriş ve çıkış sıcaklıkları arasındaki fark maksimum olmalıdır. Bu durumu sağlamak için:

-Isı transfer akışkanı, güneş tarlasından aldığı enerjiyi mümkün olduğunca buhar üretim sistemine bırakıp, minumum sıcaklıkta geri dönmelidir.

-Isı değiştirgeci, buhar üreteci gibi ekipmanların verimliliği  arttırılmalıdır.

Korozyon

Sistemin ısı kayıplarını minimum seviyeye getirirken prosesin olduğu kısımlar ve kollektörler korozyondan korunmalıdır. Örneğin ekipman içinde yoğunlaşmasına izin verilen buharın, ısı değiştirgecinde ıslak buhar korozyonuna neden olmaması için, süper ısıtıcılarda kızgın buhar haline getirilir.

Parabolik Kollektörlerle Elektrik Üretimi

Parabolik oluk kollektörlü güç santralleri, güneş tarlası, buhar ve elektrik üretim sistemlerinden oluşur. Bu santrallerde proses ısısı için, doğrusal yoğunlaştırma yapılarak, güneş enerjisinden 300 øC'nin üzerinde sıcaklık elde edilir ve ısı transfer akışkanı olarak yüksek sıcaklıklara dayanıklı termal yağ kullanılır.

Güneş tarlası; bağımsız üniteler şeklinde birbirine paralel bağlanmış parabolik oluk kollektör gruplarından oluşan alandır. Bu üniteler, gelen güneş enerjisini 4 mm kalınlığında ve yüksek yansıtma oranına (% 94) sahip aynalar vasıtasıyla, odakta bulunan alıcı boru üzerine yansıtırlar. Parabolik oluk kollektörler grupları yatay eksen boyunca dönmelerini engellemeyen metal yapılarla desteklenmiştir. Sistemde aynaların güneşi izlemesini sağlayan bir sensör bulunur.

Isı toplama elemanı; cam tüp, yüzeyi yaklaşık % 97 lik bir absorbtiviteye sahip çelik alıcı boru ve cam-metal birleştiricilerden oluşur. Alıcı boru üzerinde meydana gelen yüksek sıcaklık nedeniyle oluşan ısı kayıplarını azaltmak için, cam tüp ile alıcı boru arasındaki hava vakumlanmıştır.  Bu boşluk basıncı yaklaşık 0.1 atm dir. Isıya dayanıklı cam tüp, yüksek bir geçirgenliğe ve radyasyon kayıplarını en aza indirgemek için antireflektif bir yapıya sahiptir. Sıcaklık nedeniyle meydana gelen genleşmelerin etkilerini  gidermek için körüklü cam-metal birleştiriciler kullanılmaktadır.

Güneş tarlası kontrol sistemi; genel kontrol sistemi ve her kollektör grubunda bulunan lokal kontrol ünitelerinden oluşur. Genel kontrol sistemi güneşlenme durumunu izler ve buna göre sistemi tamamen ya da kısmen açar ya da kapatır. Bu işlem, lokal kontrol üniteleriyle iletişim içinde yapılır.  Lokal kontrol üniteleri, her kollektör grubunu ayrı ayrı kontrol ederek güneşin takip edilmesini sağlarlar.

Buhar üretim sistemi; ön ısıtma, buhar üretimi ve süper ısıtma bölümlerinden oluşur. Bu bölümlerden geçirilerek 371oC ve 100 bar basınca yükseltilen buhar, elektrik üretimi için türbine gönderilir. ?retimden sonra yeterince soğumayan buhar, yeni bir çevrime gönderilmeden, yeniden aynı sıcaklığa kadar ısıtılır ve tekrar türbine gönderilir. Bu ikinci çevrimden sonra artık soğuyan buhar, sıkıştırılıp sıvı hale getirildikten sonra yeni bir çevrime gönderilir.

Güneş enerjili güç santrallerinde, güneş enerjisinin yetersiz kaldığı durumlarda, kesintisiz elektrik üretimini sağlamak için ilave ısıtıcılar kullanılır. Petrolle ya da doğal gazla çalışan ilave ısıtıcılar, aynı sıcaklık ve basınçta buhar üretirler. Şekilde gelen güneş enerjisinin elektriğe dönüştürülmesi ve kaçaklar görülmektedir.

                  

                                Parabolik Oluk Elektrik Santrallarında Elektrik Verimi

Dünyadaki Uygulamaları

Parabolik oluk kollektörlü sistemler konusunda faaliyet gösteren LUZ İnternational (ABD), dünyada güneş enerjisiyle üretilen toplam elektriğin % 92'sini gerçekleştirmektedir. Bu şirket, 1984 yılında başlattığı çalışmalar ile günümüze kadar 9 güç santralini (SEGS: Solar Electric Generating System) işletmeye sokmuş olup 4 santral ise proje safhasındadır.

80 MW gücündeki SEGS-9, 1990 yılında Harper Gölü'nde inşa edilen santralların ikincisi olup, inşa edilmesi ve devreye sokulması 8.5 ay gibi kısa bir sürede tamamlanmıştır.  SEGS-8 ve SEGS-9'dan sonra 1994 yılına kadar inşa edilecek olan 4 santral da işletmeye alındığında, 1 milyon insanın elektrik enerjisi ihtiyacını karşılayacak ve toplam 680 MW'lık bir enerji üretilecektir.

SEGS teknolojisi, güneş enerjisini birincil  enerji kaynağı olarak kullanan Rankin çevrimli buhar türbin sistemine dayanır. Güneş Santralı, parabolik oluk kollektör gruplarından (Solar Collecting Assemblies-SCA) meydana gelmiştir. Güneşi iki boyutlu olarak takip eden ve yansıtıcı yüzeyleri vasıtasıyla güneş ışınlarını odaklayarak çelik boru üzerinde yoğunlaştıran kollektörler, kolonlar üzerine kurulmuş olup, esnek hortumlarla birbirine bağlanmışlardır.  Verimi arttırmak ve ısı kayıplarını en düşük seviyeye getirmek için, absorban olarak kullanılan ve özel bir madde ile kaplı olan bu çelik boru, içi vakumlanmış cam bir tüp içine yerleştirilmiştir. Boruların içinden geçirilen ısı transfer akışkanı (sentetik yağ), 380oC civarına kadar ısıtılır ve sistem boyunca dolaştırılarak türbin jeneratörü için gerekli olan buhar üretilir.

                     

                                                 SEGS Güneş Santralinin Blok Şeması

Güneş enerjisinin yetersiz olduğu zamanlarda, kesintisiz enerji üretimini sağlamak  için, doğal  gazlı  ısıtıcı sistem kullanılmaktadır. Güneş enerjisinin yeterli, yetersiz veya hiç olmama durumuna göre sistem üç değişik şekilde çalışır.

Güneş enerjinin yeterli olduğu durumlarda, ısı transfer akışkanı doğrudan güneş tarlasından geçer. Yetersiz veya hiç olmama durumlarında ise doğal gazlı ısıtıcılarla desteklenir veya tamamen bu ısıtıcılar devreye sokulur. Her iki enerji kaynağının da kullanıldığı durumda, hem güneş enerjisinden hem doğal gazdan yararlanabilmek için by-pass valfıaçık bırakılır. Bu durumda güneş tarlasında ısınan sıvı, destek ısıtıcılar yardımı ile çalışma sıcaklığına ulaşıncaya kadar ısıtılır.

SEGS Santrallerinin Ekonomisi

ABD'de yürütülen SEGS projelerinin toplam kurulu gücü 680 MW ve toplam yatırım maliyeti 2 milyar dolardır. Bu maliyetin 1 milyar dolarlık kısmı çalışır durumdaki 8 santral için harcanmıştır. Her biri büyük bir yatırım olan bu santraller, özel şirketler tarafından finanse edilmiştir.

80 MW gücündeki bütün santraller, yaz ayları boyunca ilave güce ihtiyaç duyan Güney Kaliforniya Edison ve San Diego Gaz ve Elektrik Şirketleri tarafından finanse edilmektedir.

Petrolle çalışan 80 MW gücünde bir güç santralı ile, yatırım maliyeti bundan üç kat daha pahalı olan eşdeğer bir SEGS santralı arasında enerji üretim maliyeti açısından bir karşılaştırma yapılmıştır.

Bu karşılaştırmaya göre, ham petrolün varil fiyatının 20 ABD $'ı olduğu düşünüldüğünde, SEGS santrali % 30 daha pahalı olmaktadır.  Ham petrol fiyatının 30 ABD $'ı olduğu  varsayıldığında, maliyetler arasındaki fark % 10'a düşmektedir. Karşılaştırma için 240 MW'lık santrallar gözönüne alınır ve ham petrol fiyatının 20 ABD $'ı olduğu varsayılırsa, SEGS santralının üretim maliyetinin, petrolle çalışan santralin üretim maliyetinden sadece % 10 daha pahalı olduğu görülür. Ham petrol fiyatının 30 ABD $'ı olduğu varsayılırsa, güneş santrali elektrik üretim maliyeti açısından petrollü santrallere göre avantajlı duruma geçmektedir.

Parabolik Çanak Kollektörler

Parabolik çanak kollektörler, yüzeylerine gelen güneş radrasyonunu noktasal olarak odaklarında yoğunlaştırırlar.Bu kollektörlerin yüzeyleri de parabolik oluk kollektörlerin yüzeyleri gibi yansıtıcı aynalarla kaplanmıştır. Gelen güneş enerjisi bu aynalar vasıtası ile odaktaki Stirling motoru üzerine yoğunlaştırılır. Stirling motoru ısı enerjisini elektrik  jeneratörü  için  gerekli  olan  mekanik enerjiye dönüştürür.

Elektrik üretiminden başka, bu kollektörler buhar ya da sıcak hava üretimi için de kullanılır.

Parabolik çanak kollektörler ile elde edilen elektrik, diğer yöntemlerle elektrik üreten santrallere destek amacıyla ve maden ocakları, radar istasyonları ya da uzak köylerin elektrik ihtiyacının karşılanmasında kullanılır.  Ayrıca, endüstride buhar üretimi, yer altı enjeksiyonu, petrol çıkartılması gibi işlemler için kullanılır.

Bu santraller, küçük modüllerden oluştuğu için enerji ihtiyacı duyulan yerlerin yakınında ve ihtiyaç duyulan kapasitede tesis edilebilirler. Günümüzde uygulamaları aşağıda verilmiştir.

Günümüzde henüz ekonomik olmayan parabolik çanak ve parabolik oluk kollektörlü  sistemlerin  araştırma ve geliştirme çalışmaları sürdürülmektedir. Bu çalışmalarda amaç, birim alan maliyetini düşürmek ve verimini artırmaktır.

Merkezi Alıcı Güç Santralleri

Güneş enerjisini yoğunlaştırarak elektrik üreten diğer bir uygulama da merkezi alıcı güç santralleridir. Bu santrallerde güneş enerjisi, heliostat denen aynalar yardımı ile bir kule üzerine yerleştirilmiş olan alıcıya yansıtılır. Bu yolla  1000øC'nin üzerinde sıcaklık elde edilir. Heliostatlar, merkezi bir bilgisayar yardımı ile güneşi takip ederek güneş enerjisini kule üzerindeki alıcıya yansıtırlar.

Alıcıda ısıtılan akışkan, buhar jeneratörüne gönderilerek buhar üretilir. Bu buhar, buhar türbininden geçirilerek elektrik üretilir. Bu çevrimden sonra buhar, kondansatörde soğutma suyu çevrimi ile soğutulur ve tekrar buhar jeneratorüne döner. Isı transfer akışkanı buhar jeneratöründen geçtikten sonra alıcıya gönderilir.

Dünyadaki Uygulamaları

SOTEL ve Alman DLR şirketleri merkezi yoğunlaştırma ile elektrik üretiminin uygulanabilirliğini ve teknolojisini araştırmak için bir araya gelerek PHOEBUS grubunu oluşturmuşlardır. Bu amaçla, Avrupa,Japonya ve ABD de 6 adet santral inşa edilmiştir. Bu grubun çalışmaları merkezi yoğunlaştırıcı santraller için bir temel oluşturur.

Günümüze kadar tesis edilmiş olan merkezi alıcı sistemlerin işletilmesi sonucunda, büyük sorunlar ortaya çıkmıştır. Bu sistemlerden 2'si ekonomik olmadığından parçalara ayrılarak ve 3 taneside kapatılarak proje çalışmalarına son verilmiştir. Dünyada mevcut merkezi alıcı sistemlerin özellikleri aşağıdaki tabloda verilmiştir.

Teknoloji Türü

Sistem Verimi %

Maks. Çıkış Sıcaklığı oC

İlk Yatırım Maliyeti $

Enerji maliyeti

Elekt.

Isı

Elekt. $/kWh

Isı $/kWh

Düzlemsel Koll.

-

50-70

80

250-1000

-

0.0013-0.004

Parabolik Oluk

14

46

380

2800 kWe

0.15

0.0053

Parabolik Çanak

24

79

700

5000 kWe

0.28

-

Merkezi Alıcı

15

46

600-700

3000 kWe

0.16

0.004

Tek Kristal Silisyum

12

-

-

 6000 kWe

0.29

-

Çok Kristal Silisyum

10

-

-

6000 kWe

0.29

-

Tek İnce Film

4

-

-

5000 kWe

0.25

-

Çoklu İnce Film

7

-

-

5000 kWe

0.24

-

Güneş Enerjisi Teknolojileri ve Özellikleri

Editör Bilgileri

yunus günaslan

fizik mühendisi


Editöre Ulaşın

En Son Güncellenenler

freebsd
apiterapi
azdavay_bakirci
aramamotorlari
uyku
kazimkoyuncu
peyzaj

Uzerine.com Copyright © 2005 Uzerine.com
uzerine.com Ana Sayfa | Gizlilik Sözleşmesi | Üye Girişi